贾略羚
职 称:讲师
办公室:长清湖校区文渊楼B413
邮 箱:lljia@sdnu.edu.cn
个人简介
贾略羚,女,中共党员,1992年生,2020年在中国工程物理研究院获计算数学博士学位,2020年8月至2022年8月在北京计算科学研究中心从事博士后研究。主要研究方向为奇性问题高精度谱元方法、多变量正交多项式的基本理论、大规模科学计算和快速算法等,在SIAM Journal on Numerical Analysis, Journal of Scientific Computing等国际期刊发表SCI收录论文数篇,主持国家级科研项目1项,参与1项。
研究方向及兴趣
偏微分方程数值解;多变量正交多项式;有限元和谱元方法
开设课程
高等数学、计算方法
科研项目
1. 国家自然科学基金青年项目: 三维稀疏谱方法及其快速算法的研究(2022.01-2024.12),主持;
2. 国家自然科学基金面上项目:分数阶最优控制问题的有限元后验误差估计及自适应算法研究(2025.01-2028.12),参与。
代表性论文
1. W.X. Cao, L.L. Jia*, and Z.M. Zhang, A C1-conforming Gauss collocation method for elliptic equations and superconvergence analysis over rectangular meshes, CSIAM Transaction on Applied Mathematics, 5-2(2024), 320-349.
2. W.X. Cao, L.L. Jia*, and Z.M. Zhang, Superconvergence Analysis of Cm Finite Element Methods for Fourth-Order Elliptic Equations I: One Dimensional Case, Communications in computational physics, 33-5(2023), 1466-1508.
3.L.L. Jia, H.Y. Li*, and Z.M. Zhang, Sparse spectral-Galerkin method on an arbitrary tetrahedron using generalized Koornwinder polynomials, Journal of Scientific Computing, 91-1(2022), 22.
4.W.X. Cao, L.L. Jia, and Z.M. Zhang*, A C1-conforming Petrov-Galerkin method for convection-diffusion equations and superconvergence analysis over rectangular meshes, SIAM Journal on Numerical Analysis, 60-1, (2022) pp.274-311.
5.Y.C Guo, L.L. Jia*, H.J. Chen, H.Y. Li, and Z.M. Zhang, A mortar spectral element method for full-potential electronic structure calculations, Communications in computational physics, 29-5 (2021), 1541-1569.
6.W.X. Cao, L.L. Jia, and Z.M. Zhang*, A C1 Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence, Discrete and continuous dynamical system, Series B, 26-1 (2021), 81-105.
7.C.T. Sheng, S.N. Ma, H.Y. Li, L.L. Wang*, and L.L. Jia, Nontensorial generalised Hermite spectral methods for PDEs with fractional Laplacian and Schrödinger operators, ESAIM: Mathematical Modelling and Numerical Analysis, 55 (2021), 2141-2168.
8.L.L. Jia, H.Y. Li*, and Z.M. Zhang, Numerical analysis on the mortar spectral element methods for Schrödinger eigenvalue problem with an inverse square potential, Applied Numerical Mathematics, 158 (2020), 54-84.
9.L.L. Jia, H.Z. Chen, and V.J. Ervin*, Existence and regularity of solutions to 1D fractional order diffusion equations, Electronic Journal of Differential Equations, 2019-93 (2019), 1-21.
10.L.L. Jia, H.Z. Chen*, and H. Wang, Mixed-type Galerkin variational principle and numerical simulation for a generalized nonlocal elastic mode, Journal of Scientific Computing, 71 (2017), 660-681.