搜索
首页  〉  师资队伍  〉 详情
贾金红
作者:编辑:管煜点击量:

贾金红

undefined职  称:副教授

办公室:长清湖校区文渊楼B413

邮  箱:jhjia@sdnu.edu.cn

研究方向:偏微分方程数值解


个人简介

科研工作经历:

2018年-至今,红足1世66814, 讲师

2015年-2018年,复旦大学数学学院,博士后

2013年-2015年,美国南卡罗莱纳大学,访问学者

教育经历:

2009年-2015年,山东大学数学学院,博士研究生

2005年-2009年,山东师范大学数学学院,本科

研究兴趣

偏微分方程数值解;分数阶方程快速算法

开设课程

实变函数;算法与程序设计;高等数学;线性代数

科研项目

1.山东省自然科学基金博士基金,曲面生长的广义分数阶方程:建模、计算、分析及应用,2019-07至2022-06,10万元,在研,主持

2.中国博士后科学基金面上项目,时空分数阶扩散方程的局部加密快速算法,2016-07至2017-12,8万元,已结题,主持

代表性成

1. Jia J, Wang H. A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains[J]. Computers and Mathematics with Applications, 2018, 72:2031-2043.

2. Jia J, Wang H. Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions[J]. Journal of Computational Physics, 2015, 293: 359-369.

3. Jia J, Wang H. A fast finite volume method for conservative space-fractional diffusion equations in convex domains.[J]. Journal of Computational Physics, 2016, 310: 63-84.

4. Jia J, Wang C, Wang H. A fast locally refined method for the boundary value problem of fractional diffusion equations[C]. International Conference on Fractional Differentiation and Its Applications. International Conference on Fractional Differentiation and Its Applications, 2014, doi:10.1109/ICFDA.2014.6967432.

5. Jia J, Wang H. A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh[J]. Journal of Computational Physics, 2015, 299: 842-862.

6. Jia J, Wang H. A fast finite volume method on locally refined meshes for fractional diffusion equations, East Asian Journal on Applied Mathematics, 2019, 9: 755-779

7. Jia J, Wang H. A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes[J]. Computers and Mathematics with Applications, 2019, 78(5): 1345-1356.

8. Jia J, Lu T, Wang K, et al. A uniformly optimal-order error estimate for a bilinear finite element method for degenerate convection-diffusion equations[J]. Numerical Methods for Partial Differential Equations, 2012, 28(3): 768-781.

9. Lu T, Jia J. An optimal-order error estimate for a finite difference method to transient degenerate advection-diffusion equations[J]. International Journal of Numerical Analysis and Modeling, 2012, 9(1): 56-72.

10. Wang H, Ren Y, Jia J, et al. A probabilistic collocation Eulerian-Lagrangian localized adjoint method on sparse grids for assessing leakage through wells in randomly heterogeneous porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 292: 35-53.